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CHAPTER 4

The Pursuit of Model Synthesis

4.1 Introduction

Chapter 3 reviewed the range and evolution of techniques which have been applied

to capacity planning.  Models based on two or more techniques seem to be more

capable of capturing the different kinds of complexities and uncertainties than those

based on single techniques.  This suggests that model synthesis (using more than

one technique) may help to achieve the ideal of comprehensive yet comprehensible

models by exploiting synergies across complementary and compatible techniques.

Yet the modelling literature has little to offer on strategies and criteria for model

synthesis.

This chapter gives an account of the investigations into the feasibility and

practicality of model synthesis and associated model structures by a

conceptualisation of model synthesis (Appendix C), prototyping, and a comparison

of model performance (section 4.3).  Through a series of modelling experiments

(section 4.4), replications of existing approaches (section 4.2) and construction of

synthesis prototypes (section 4.5) are assessed according to the dominant criteria

of comprehensiveness (model completeness) and comprehensibility (transparency

and manageability).

That model synthesis, via the decision analytic framework proposed by this thesis,

proved to have major practical limitations raised two important questions.  1) Is

model completeness a reasonable goal in the first place?  2) Are there more

practical means to compensate for the lack of completeness or deal with the range

of uncertainties?  Section 4.6 discusses these questions with respect to the concept
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of flexibility.  The last section 4.7 summarises the main findings and proposes an

agenda for the rest of the thesis.

4.2 Experimental Protocol

An experimental research protocol, closely resembling a scientific experiment, was

adopted to allow an objective and systematic method of inquiry.  Figure 4.1 shows

the three main components, namely, literature review, feasibility tests, and

modelling experiment.  Such a case-study based modelling experiment was

originally intended to give both methodology and energy policy insight.

First, extensive literature reviews from the previous two chapters identified

uncertainties and modelling requirements which formed the basis for a lengthy

model evaluation criteria (section 4.3.4).  Second, two pilot studies (section

4.3.2) were conducted to ascertain the feasibility of model replication with

available modelling software, applicability of the evaluation criteria, and soundness

of the evaluation method (section 4.3.3).  Third, a case study (section 4.4.1) was

developed to capture the current concerns in the UK ESI and to inject energy

policy insight into the subsequent analysis.  Fourth, three modelling approaches

(section 4.4.2) representing those followed in the industry were replicated and

evaluated.  Fifth, issues of model synthesis (section 4.5.2) were conceptualised.

Several prototypes of model synthesis within a decision analysis framework

(section 4.5.3) were constructed.  Similarly a so-called “model of model”  (section

4.5.4) was tested.  Insights from replicating existing approaches were transferred

to the second stage of model synthesis, where the construction of comprehensive

yet comprehensible models via complementary and compatible techniques was

studied.
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Figure 4.1 Experimental Protocol
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Apart from minor criticisms1, the experimental protocol provided a systematic

method of model comparison.  The next three sections give the rationale, details,

and results for each of the main research components.

4.3 Model Replication and Evaluation

4.3.1 Rationale

A mere literature review of applications does not sufficiently expose the full

limitation and potential of existing approaches.  What is written can be biased and

minimal, supporting the authors’ intentions but not illuminating the intricacies of

their particular approach.  Authors have discretion over what to reveal and

                                               
1  Circularity of the modeller as evaluator may cast doubt into the authenticity of the replication and the

objectivity of the evaluation.  Model replication and synthesis depend greatly on modelling skills and
availability of modelling software.  Depending on these conditions, different researchers may reach
different outcomes.
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consequently may hide weaknesses of their approach while presenting them in an

undeservingly favourable light.  Comparing models described in the literature is

further complicated by the implicit standards of fairness, objectivity, and

thoroughness.

The applications reviewed in Chapter 3 differ widely in content, technique, and

detail.  They vary from the evaluation of a particular technology to a range of

technologies, from the analysis of demand uncertainty to industry investment

behaviour, etc.  They also tend to be situation-specific, that is, geared to a

particular case study and not always comparable.  These fundamental differences

complicate the task of model comparison.

We propose a four step method consisting of 1) definition of evaluation criteria

from literature review, 2) replication of model using available software, 3)

evaluation of model against pre-defined criteria, and 4) comparison of models.

Model replication permits a closer examination of uncertainty modelling as well as

a more meaningful critique of limitations and potential for synthesis.  Application

to a single case study anchors the modelled content to enable ease and fairness of

comparison.  A two staged modelling experiment provides the vehicle for

systematic assessment.  The first stage replicates and evaluates the three modelling

approaches.  The second stage combines features of different approaches as well as

tests the feasibility of model of model.  One of these approaches operationalises the

recommendation of the inspector at the Sizewell B public inquiry, that a

probabilistic analysis is better than a deterministic one.  Another approach transfers

the predominantly US-based decision analysis approach to the UK situation.

4.3.2 Method of Replication

Nowadays commercial desktop modelling tools such as spreadsheets, e.g. Excel

and Lotus 123, add-ins, e.g. @Risk, and decision software, e.g. DPL, offer the
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kind of ease-of-use and multi-functionality which facilitate rapid model

construction.  Most of the models reported in the literature have been painstakingly

computer coded from scratch and required major effort in implementation.  The

new tools allow models to be conceptualised, constructed, and tested much more

quickly and effectively.  Such tools as these and others can be used to mimic or

replicate easily the essential characteristics of capacity planning models reported in

the literature.

The feasibility of model replication and evaluation has been established in two

unrelated pilot studies.  The first study addresses specific issues of the Nuclear

Review in the UK.  The well-known techniques of sensitivity analysis and risk

analysis were applied to a comparison of levelised costs of nuclear, coal, and gas

plant based on data taken from various OECD countries.  Documented fully in

Appendix A, this study exemplifies the level of detail pursued in the modelling

experiment.  The second study used data from the Hinkley C public inquiry for

replicating the deterministic approach, which is later subsumed into the first stage

of the experiment in Appendix B.  The second proved the feasibility of evaluation

as well as replication.

4.3.3 Method of Model Evaluation and Comparison

This case study based modelling experiment contains several standard research

components:  comparative analysis, case study, and experimental design.

Regrettably, few examples in the literature employ such a combination.

Most model comparison studies are not case study based but mere reviews of

model specifications.  The studies by Dixon (1989) and Davis and West (1987)

belong to the category of case study based comparative analysis of models.  While

Dixon compares existing models to critique and improve upon them, Davis and

West compare to show off the model they developed.  Dixon comments only on
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the input and output thus treating the models as black boxes.  On the other hand,

Davis and West probe into the trade-offs of specific techniques employed in the

models.  Neither study defines the criteria for comparison beforehand.  The basis of

comparison is very general and superficial, e.g. strengths and weaknesses, ease of

use, and impact of models.

Not enough has been written about how to evaluate models.  Mulvey (1979)

develops a workable procedure for comparing competing models for selection

purposes, beginning with an evaluation of individual models against a pre-defined

criteria.  His five dimensions for evaluation consist of performance,

realism/complexity, information requirements, user friendliness, and

computational costs.  He argues that it is possible to overcome the technique-

driven bias provided a methodology exists for evaluating models which are based

on different techniques.  His models are compared ordinally by preference ranking

on each dimension, with the final results compared linearly by dominance.  Morris

(1967) suggests broad characteristics of models, which are useful but not specific

enough for the purposes of assessing large complex models.  Beyond roughly

describing a model as simple or complex, he proposes other characteristics such as

relatedness, transparency, robustness, fertility, and ease of enrichment.

In contrast to above, our evaluation criteria originates from an extensive literature

review, hence more detailed and comprehensive than earlier studies.   Instead of

ranking all models on one criterion, our evaluation method assesses each model

individually against all criteria.

4.3.4 Evaluation Criteria

The detailed enumeration of uncertainties and modelling requirements in chapters 2

and 3 was proved feasible for evaluation purposes in the second pilot study.  This

original list of requirements, however, was difficult to use for comparison
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purposes.  For example, it was not always possible to compare models with

different assumptions and properties.  A reduced checklist was more workable but

lacked the detail and comprehensiveness for which the evaluation and synthesis

were intended.  The reduced criteria consist of five major categories for evaluation:

1) level of detail, 2) desirable model characteristics, 3) decision focus, 4) output,

and 5) uncertainty representation and analysis.  Their sub-criteria are shown in

table 4.1 and discussed thereafter.

Table 4.1 Model Evaluation and Comparison Criteria

Main Category Sub-Criteria (Elements)

Level of detail • number of variables included
• operational detail (technical parameters)
• financial detail (costs)
• types of plants / technology

Desirable model characteristics • simplicity (more detail, less simple)
• transparency
• comprehensiveness (more detail, more comprehensive)
• extensibility
• complexity
• comprehensibility

Decision focus • types of decisions captured
• multiple stages
• generation of alternatives

Output • range of insight
• richness of solutions
• range and diversity of alternatives
• business risk

Uncertainty representation and
analysis

• discrete vs continuous
• conditional
• number of iterations (sampling)
• representativeness
• dimensionality (or in level of detail)
• computational tractability (or in level of detail)

The level of detail relates to input variable specification which directly contributes

to the comprehensiveness of the model.  Although the format of input specification

was largely ignored in the evaluation, it directly affected the transparency of the

model.  This category includes questions like how many variables are, can, or must



140

be included; how many types of plants are considered; and the level of operational

and financial detail.  Operational detail relates to parameters such as load factor,

utilisation rate, and thermal efficiency.  Financial detail covers costs, e.g.

operations and maintenance charges, interest during construction, tax, and discount

rates.

Model characteristics can be assessed from the process of replication.  A model

that is comprehensive in input yet comprehensible in output requires a trade-off of

the following desirable features: simplicity and comprehensiveness,

comprehensibility (transparency) and complexity, and other features like

extensibility and reusability.  A simple model structure can hardly capture all

details required, i.e. simplicity in structure versus comprehensiveness in

specification.  The complexity of plant economics and dimensionality of different

kinds of uncertainty call for a transparent model for communication purposes.

Comprehensibility by the user is important for the understanding of uncertainty.

Decision focus refers to the representation of the decision maker’s perspective,

such as risk attitude, sequential stages, and uncertainty resolution.  Risk attitude

can be incorporated in the discount rate, utility functions, and risk tolerance

coefficient.  Decisions and uncertainties in capacity planning do not occur

simultaneously, as modelled in the deterministic and probabilistic approaches.

The quality of the output is related to the level of detail in inputs.  The range of

insight and richness of solutions surface from the range and diversity of

alternatives.  These and other aspects of the problem, such as business risk, reflect

the benefit of using a particular approach.

The last category of uncertainty representation and analysis consists of the

following assessments: discrete and continuous probabilities, conditional

dependence, number of iterations (data points sampled in the distribution),
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representativeness, dimensionality, and computational tractability.  These pre-

defined criteria act as cues for the investigation of the potential, limitation, and

effectiveness of each approach in modelling uncertainty.

4.4 Case Study Based Modelling Experiment

4.4.1 Case Study

The case study captures a snapshot of the UK electricity supply industry as at July

1993.  It is generic enough to embrace a range of objectives but specific enough

(by consolidation of published data) to relate to current industry practice.  It

reflects the on-going controversies surrounding the major fuels, competition in

generation, impact of environmental limits, and other uncertainties.

The utilities involved in power generation in the UK Electricity Supply Industry fall

into three categories, broadly labelled as unprotected and dominant, protected but

competitive, and unprotected but encouraged.  Each of these perspectives are

briefly described below, and their plant mix as at July 1993 summarised in

associated tables.

The unprotected but dominant utility describes the two major power generators,

National Power and PowerGen.  These duopolists are primarily concerned with

sustaining marketshare while increasing return to shareholders and therefore

strongly motivated by profit.  Despite having the financial muscle to invest in

different types of plant, these companies face considerable regulatory uncertainty,

e.g. threat of MMC2 referral, caps on electricity prices, the Regulator’s scrutiny of

anti-monopolistic behaviour, and stringency of environmental allowances.  National

Power’s plant mix as at July 1993 is summarised in table 4.2.

                                               
2 Monopolies Mergers Commission
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Table 4.2 Unprotected but Dominant Utility: National Power

Type of Plant Number Capacity in MW

Large Coal 7 13,103

Medium Coal 4 3,412

Small Coal 7 1,784

Oil 3 4,484

Open Cycle Gas Turbine (OCGT) 16 1,565

Combined Cycle Gas Turbine (CCGT) 1 620

Hydro 3 40

TOTAL 41 25,008

The protected but competitive utility characterises Nuclear Electric, which has not

been privatised.  Despite heavy subsidy of the nuclear levy and other government

protective measures, the nuclear generator has an equally strong profit motive, i.e.

to show that it can eventually compete in the private sector when the subsidy

expires in 1998.  Many of these uncertainties will be resolved with the outcome of

the Nuclear Review due in 1995, i.e. privatisation, subsidies, public support,

financing of power stations, and the future of nuclear power.  Nuclear Electric’s

plant mix as at July 1993 is summarised in table 4.3.
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Table 4.3 Protected but Competitive Utility

Type of Plant Number Capacity in MW

Magnox 7 3,293

AGR 5 6,039

Hydro 1 30

TOTAL* 13 9,362

*Excludes Sizewell B currently under construction

Finally, the unprotected but encouraged utility reflects the views and opportunities

of independent power generators.  Independent power producers are building

CCGTs which are tied to back-to-back 15 year fuel contracts as a way for the

regional electricity companies to diversify their own distribution and supply

business as well as to gain a competitive advantage in this market.  Table 4.4

summarises the combined portfolio of all independent power generators by status

as at July 1993.
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Table 4.4 Unprotected but Encouraged Utility

Status (CCGT, CHP) Number Capacity in MW

Transmission Notice and Under Construction1,2 9 4,936

Transmission Notice and Section 36 Consent Given 6 4,619 - 5,156

Section 36 Consent Given Only3 6 3,124 - 3,354

Transmission Notice Only4 10 8,497

Public Inquiry 2 506

Application for Planning Permission 15 5,150 - 5,360

Early Stages (None of Above) 6 1,200 - 1,300

TOTAL5 54 28,032 - 29,109

1 Excludes BNFL's Sellafield CHP 162 MW under construction but not directly connected to system
2 Excludes Sizewell B PWR 1254 MW Under Construction
3 Excludes Hinkley C PWR 1200 MW which is very unlikely to be built
4 Excludes Scottish Interconnectors 750 MW
5 Includes projects in which National Power and PowerGen have stakes

In an increasingly more competitive electricity trading market, with tighter

environmental regulation and potential over-capacity, the case study addresses the

following question.

How should a power generating company in the UK plan for capacity

expansion in terms of timing, capacity levels, and plant mix?

These investment decisions depend on the kinds of technologies available, their

economics, and impacts of uncertainty.  The cost of a capacity expansion plan is

calculated from totalling all investment and operating costs.  The relative

economics of plant can be determined by its merit order in the entire system.

To answer the capacity planning question, two main types of uncertainties

surrounding the decisions to invest new plants and retire old ones are explicitly

considered:  demand and fuel price.  These uncertainties at the industry level
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concerns all types of power generators.  Therefore differentiation amongst the

companies is not required.  Uncertainties at the firm level would require

differentiation by type of utility; however these firm level uncertainties have not

been addressed in this case study.

1) Demand uncertainty surrounds the seasonal fluctuation of demand as expressed in

load duration curves as well as the period growth of demand.  The growth and

shape of demand depend on factors such as energy efficiency, consumer

consciousness, demand side measures, weather, load management, fuel switching,

VAT regulations, economic growth, and responsiveness to electricity prices.

2) Fuel price uncertainty affects the types of fuels used in the technologies.  The main

factors describing fuel price uncertainty are base price and subsequent escalation

rates.  Emission regulation, spot prices, and related fuel prices determine the

direction and rate of fuel price escalation.

The consolidated industry data used in the replicated models are contained in

Appendix B.  Briefly, input data specification of plant consisted of 85 existing plant

in the system totalling 60 GW of capacity of 10 different technologies (magnox,

AGR, large coal, medium coal, small coal, oil, OCGT, CCGT, hydro, and the

Scottish and French links).  Eight different seasonal load duration curves were

specified to correspond to peaks and troughs in demand during the year.  Linear

trend forecasts were specified for peak demand and each type of fuel for each

period in the planning horizon.  Capital and operating costs were specified for each

of the 85 plants.  New alternatives included fossil fuel plant, nuclear, and

renewables.

4.4.2 Stage 1:  Three Archetypal Modelling Approaches

The first stage of the modelling experiment examines three modelling approaches

representative of those followed in the industry.  Two extreme approaches

characterise capacity planning in the UK electricity supply industry:  deterministic



146

and probabilistic.  These have been highlighted in public inquiries into proposals to

build new nuclear power plant.  The deterministic and probabilistic approaches

centre around an optimisation of investment schedules to electricity demand and

fuel forecasts.  In the US, on the other hand, regulatory hearings have increasingly

made use of the decision analytic approach which combines some features of the

deterministic and probabilistic approaches.  These three modelling approaches

(deterministic, probabilistic, and decision analytic) represent quite distinct norms in

the industry and span the range of basic approaches.

1) The deterministic approach is typical of large, public sector, monopolistic power

companies, e.g. the former Central Electricity Generating Board (CEGB) in the

UK.  The CEGB used the techniques of scenario analysis, optimisation, and

sensitivity analysis.  Their approach is well documented in Greenhalgh (1985),

Vlahos and Bunn (1988b), and the Sizewell and Hinkley public inquiries (Layfield,

1987).  Five scenarios are postulated from assumptions on world growth and the

UK economy.  Within each scenario, a linear programming optimisation is

performed to produce the best solutions.  Uncertainty is investigated afterwards

through sensitivity analysis by changing one variable at a time.  This deterministic

approach considers a few uncertain parameters that are sequentially and

independently varied over limited ranges.

2) The probabilistic approach is effectively an expanded risk analysis demonstrated by

Evans (1984) and also discussed in Evans and Hope (1984),  Kreczko et al (1987),

and Jones (1989).  It gives attention to the kind of uncertainty analysis

recommended by the inspector Sir Frank Layfield in the conclusions of the Sizewell

B public inquiry.  However, this recommendation was not followed in the ensuing

Hinkley enquiry.  This approach is an extension of the first pilot study with the

major difference that an optimisation sub-model is run several times using the

sample values from the risk analysis-generated probability distributions.  By

varying more than one variable at the same time, it is possible to get different

combinations of input values.  In the Sizewell study, fifteen input variables were

explicitly included for this uncertainty analysis, with justification for the exclusion

of other major variables such as plant lifetime and discount rate.
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3) The decision analytic approach is patterned after the North American decision

analysis school, a discipline actively practised by consulting firms such as SDG

(Strategic Decisions Group) and ADA (Applied Decision Analysis).  We replicate a

variant of the Over/Under Model of Cazalet et al (1978).  This kind of decision

analysis approach is illustrated in Anders (1990) and Peerenboom et al (1989).  The

approach is heavily decision analysis oriented with emphasis on the technology

choice decision.  A decision tree is structured to capture the major decisions and

uncertainties.

Details of these approaches, their replication, and evaluation are given in Appendix

B.  Briefly, the deterministic and probabilistic approaches were straightforward

replications of the Sizewell B and Hinkley C models but with industry data updated

to 1993.  The decision analytic approach required more extensive prototyping, i.e.

re-structuring of the basic problems in capacity planning.

4.4.3 Comparison of Approaches

The three approaches were replicated and evaluated independently of each other.

The plant schedule optimisation central to the deterministic approach provided a

link to the probabilistic approach.  However, the transition between the

probabilistic and decision analytic approaches required a major re-orientation in

conceptualisation and construction.

The optimisation programme used in the deterministic and probabilistic approaches

captures the operational and financial details missing in the decision analytic

approach.  Unfortunately, the level of detail required by the capacity optimisation

programme is difficult to attain in the new competitive environment.  Commercial

confidentiality restricts the publication and availability of detailed plant

characteristics and costs.  In the absence of actual plant data, estimates may reduce

the level of accuracy and detail and adversely affect the reliability of the output.

This aspect of modelling, i.e. the inability to model the “full” system given the

difficulty of obtaining competitors’ data, is even more crucial now.
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The level of detail leads to the comprehensiveness of specification which are met

by the first two approaches.  Both are developed from a full model specification of

the capacity expansion problem.  They take a simultaneous approach to decision

making, i.e. a single plan is produced rather than the usual multi-staged contingent

nature of planning.  The decision analytic approach, in contrast, decomposes

capacity planning into a sequence of decisions.  All three approaches can be

extended to include more scenarios, uncertainties, time periods, decisions,

alternatives, etc.  However, the probabilistic and decision analytic approaches run

into dimensionality problems.

The deterministic approach treats uncertainty in an expanded what-if analysis,

whilst saying nothing about the preferences and risk attitudes of the decision

maker.  Assigning probabilities to scenarios and uncertain parameters enables the

consideration of likelihoods.  The probabilistic approach merely produces a robust

plan, i.e. results that lie within an acceptable range.  It gives no indication of the

sequence of decisions that should be undertaken.  Decision analysis by definition is

a decision-focussed technique.  It captures the risk attitude and value preferences

of the decision maker as well as the multi-stage nature of capacity planning,

thereby allowing the explicit consideration of each perspective.

Range and richness of insight in the output depend on the specification of the

input.  The probabilistic approach allows the expression of all important

uncertainties at once and also gives risk profiles of different output parameters at

the end of the simulations.  The decision analytic approach requires the sequential

consideration of inputs and the fulfilment of mutually exclusive and collectively

exhaustive conditions.  As a result, outputs from decision analysis come from a

smaller set of permutations than possible from risk analysis.  Risk profiles as

constructed from cumulative output distributions can be compared for cost ranges

of different alternatives.  On the other hand, the decision analytic approach
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produces discrete pictures of these alternatives, which give much less information.

Although the deterministic approach produces outputs that are scenario dependent,

it gives different combinations of plant alternatives, which cannot be achieved in

decision analysis due to limited input specification.

In theory, continuous probability distributions can be attached to chance nodes in

decision analysis.  In practice, finite states and the dimensionality of multiple stages

prevent such a formulation.  The probabilistic approach, on the other hand, uses

efficient sampling methods to propagate continuous distributions to the output.

However, these sampling methods assume independent probability distributions.

The deterministic approach treats uncertainty in a static and limited fashion.  There

is no account of asymmetry or likelihood.  Table 4.5 summarises the above

comparison of modelling approaches by evaluation criteria.

Table 4.5 Comparison With Respect to Evaluation Criteria

Criteria Deterministic Probabilistic Decision Analytic

Level of detail high high low

Model
characteristics

comprehensive comprehensive comprehensible

Decision focus optimisation simulation decision focussed

Output scenario-dependent
plan

risk profiles decision sequence
paths

Uncertainty static, discrete

by sensitivity

cumulative

by sampling

sequential resolution

by discrete states

In terms of modelling effort and focus, the deterministic approach is input

intensive as it requires the generation of scenarios and detailed specification of

input.  The probabilistic approach is output intensive as evident in the sheer

volume of sampling data and simulation results that must be consolidated.  In

contrast, the decision analytic approach is structure intensive, as it forces the
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problem to be addressed in terms of controllable and uncontrollable events, i.e.

decisions and uncertainties.  Table 4.6 summarises the main points in the evaluation

of each approach with respect to their contribution to a comprehensive yet

comprehensible model.

Table 4.6 Summary of Approaches

Approach Positive Features Negative Features

Deterministic • credible basis

• easy

• detailed

• captures complexity of merit
order

• none of the scenarios may
occur

• may have sub-optimal plans

• tendency towards over-
optimism

• no account of asymmetries

• static view of uncertainty

Probabilistic • robustness

• simultaneous computation of
all probabilistic effects

• time consuming iterations

• manageability and data control

• independence of probabilities

Decision Analytic • perspectives

• multiple stages

• risk attitude

• flexible construction

• lack of detail

• dimensionality problem

As expected, each approach is incomplete insofar as capturing all areas of

uncertainties.  Deterministic optimisation requires considerable input data. Scenario

and sensitivity analyses give limited insight to the kinds of uncertainties that

prevail.  Risk analysis by means of Monte Carlo simulation of the optimisation

model improves the representation and treatment of uncertainty but produces

output risk profiles at a high computational cost.  Although decision analysis

considers decisions and uncertainties explicitly, its structural simplicity cannot

incorporate the complicated production costing in electricity generation.  These
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results point to the strengths and weaknesses of each approach and the need to

balance the desirable model characteristics.

The deterministic and probabilistic approaches centre around the optimisation

algorithm of fitting investment schedules to forecasts of demand, fuel, and other

uncertain parameters.  Fitting plans to forecasts relies on the accuracy of forecasts.

Sophisticated trend-based forecasting methods has performed poorly in the

turbulence of the last two decades.  Inaccurate forecasts lead to sub-optimal plans.

The traditional approach of fitting plans to forecasts of fuel supply and electricity

demand is a static answer to a dynamic reality.

Modelling different perspectives in deterministic and probabilistic approaches is

difficult, because the optimisation programme optimises the entire system and not

with respect to ownership.  A decision focus can only be manifested in decision

analysis which, on the other hand, is incapable of modelling the intricacies of the

power system.

Throughout the experiment, difficulties in meeting the main conflicting criteria of

comprehensiveness (completeness) and comprehensibility (manageability and

transparency) are evident.  Each approach is either comprehensive but not

comprehensible or vice versa, never both, as summarised below.

1) The deterministic approach is incomplete and inadequate in the treatment of

uncertainty.

2) The probabilistic approach generates too much data to be manageable.

3) The decision analytic approach is unable to capture the details required in power

systems planning.

Given the above conclusions, the next stage of the modelling experiment attempts

to overcome the deficiencies of individual approaches and resolve the conflicts
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through synthesis of the essential feature of the first two approaches (optimisation)

and an attractive feature of the third approach (decision analysis).

4.5 Model Synthesis

4.5.1 Rationale

Applications based on single techniques lack the breadth to cover the range of

strategic issues or the detail to represent aspects of the power system.

Mathematical restrictions, computational difficulties, and the maintenance of

intuitive understanding prevent more extensive specifications of the complete

problem.  The three representative approaches are individually unable to meet the

conflicting criteria of comprehensiveness and comprehensibility.  These conclusions

suggest that a synthesis of techniques, resulting in a larger but more integrated

model, should achieve the kind of balance and completeness unattainable by any

single technique.  Some people, e.g. Linstone (1984) and Brown and Lindley

(1986), suggest that it is only by approaching a problem from multiple perspectives

that reliable insights can be developed.

Model integration, composite models, combining methods, and complementary

modelling all refer to the term we coined “model synthesis”.  The final synthesized

model consists of model components which may be models or techniques.  The

idea of synthesis is appealing for six reasons.

1) By exploiting synergies between techniques, a synthesis reflects the notion that “the

whole is greater than the sum of the parts.”

2) A synthesis uses the complementarity of the strengths and weaknesses of

components to achieve completeness.

3) Due to the high cost of development (Balci, 1986), it seems easier to use existing

readily available models and tools rather than to develop one from scratch.
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Synthesis capitalises on familiarity and reusability of existing models.  Reisman

(1987) urges a synthesis of models rather than the development of more models, as

there are too many models already.  Synthesis through generalisation and

systematisation reduces the jargon and effort required to master new techniques.

4) Instead of new investment (of knowledge, resource, etc), synthesis involves issues of

integration and automation.

5) Synthesis makes use of specialisation.  Each component in the eventual synthesis

addresses what it is good at.

6) The above five reasons are supported by the noticeable modelling trend seen in

practice, as explained below.

The energy modelling literature indicates an inevitable trend towards building

bigger models through synthesis of existing approaches, e.g. FOSSIL2, MARKAL,

NEMS, and WASP in Ruth-Nagel and Stocks (1982), Beaver (1993), and IAEA

(1984).  While advances in software, hardware, and human capability may help to

achieve these modelling goals of completeness, the required amount of effort and

resource may well exceed that available to a single utility.  This thesis addresses

this practicality issue, i.e. the costs versus the benefits.

The second stage of the experiment determines the feasibility of model synthesis

for a typical power company in the UK, given its limited resources.  Different

prototypes of model synthesis are constructed.  Ways to combine other techniques

within a decision analysis framework are conceived and tested.  Models of models

(explained in section 4.5.4) are built to facilitate this synthesis.  Beginning with a

full conceptualisation of the issues involved in model synthesis in section 4.5.2, the

second stage ends with a discussion of the practicalities of synthesis in section

4.5.5.
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4.5.2 Conceptualisation of Model Synthesis

Applying more than one technique to achieve synthesis involves the following

considerations: familiarity, dimensionality and complexity, system integrity,

extensibility and reusability, compatibility, functional and structural synergies.  We

briefly discuss these concerns and then summarise the conceptualisation of model

synthesis found in Appendix C.

Familiarity with these techniques is required beyond a superficial level.  The

modeller’s choice of technique, ability to handle different modelling frameworks

and assumptions, and ability to exploit synergies between techniques depend on his

familiarity with the model components.  This technique-driven bias arises out of the

learning curve effect and cognitive limitations.

Dimensionality arises from increases in shared data, interacting variables, and

other permutations of uncertainties and errors.  These dimensionality issues in turn

imply concerns of manageability of data and model, validation, error tracking and

diagnosis, conversion and translation of data, and compatibility of model

components.  Composite models with integrated methodologies contain a higher

level of complexity, including difficult to trace information flow.  Higher levels of

complexity also arise from dimensionality.

Changes in problem specification and assumptions must be propagated through the

model such that resulting changes in the components are consistent and the

system’s integrity is preserved.  Any extension or changes in problem

specifications or using the synthesized model for different purposes will require re-

examining all components to preserve system integrity.  Extensibility and

reusability of model components are required to facilitate synthesis.
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One of the difficulties of synthesis results from the (lack of) compatibility  of

underlying (necessary) assumptions, functionality, and theoretical foundations of

model components.  If the incompatible or even conflicting fundamental

requirements cannot be resolved, the final model may not work.  Ironically, the

strength and appeal of model synthesis lies in the diversity (and complementarity)

of model components!

Synthesis should exploit structural  as well as functional synergies between

techniques.  However, methods to facilitate this are not always obvious.  Appendix

C proposes examining similarities between techniques as a starting point.  The

above concerns and implications are summarised in table 4.7 below.

Table 4.7 Major Concerns in Model Synthesis

Concern Definition and Description Implications

Familiarity Modellers’ acquaintance and
understanding of model
components, i.e. techniques and
models which are used in the final
synthesis.

• tendency to make use of or rely on
familiar techniques and under-
exploit the less familiar ones

• modeller’s ability to handle
different frameworks and
assumptions to achieve a useful
synthesis

• switching and transitional costs

Dimensionality Increases in and permutations of
inputs, outputs, interactions, and
interfacing of data and variables.

• higher level of complexity

• data manageability

• error tracking and diagnosis

• compatibility

• conversion and translation

• validation

System integrity The “wholeness” of synthesis. • consistency throughout

• extensibility of components

• reusability
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Compatibility Co-existence of model components
in a synthesis depends on the
underlying assumptions and
theoretical foundations.

• feasibility of synthesis

• effort required in resolving
conflicts of interest

Synergies Similarity or affinity in
functionality and structure of
model components.

• added contribution to final
synthesis

Model integration is a hot topic in model management.  The decision support

literature is full of new modelling languages, most notably Geoffrion (1987), but

devoid of ways to synthesize existing techniques or models.  A conceptualisation of

model synthesis in Appendix C attempts to bridge this gap.

Given the availability of so many different types of techniques and models,

strategies for synthesis  appear necessary to narrow down the possibilities and

avoid the costly method of trial and error.  [Appendix C gives three main strategies

called modular, hierarchical, and evolutionary.]

Beginning with definitions to distinguish between techniques and models, the

conceptualisation highlights synergies between techniques in terms of 1) structure,

2) functionality, and 3) the complementary contributions they add to a synthesis.

Structural considerations include the a) selection, b) ordering, and c) linkage of

model components.

Model linkage is complicated by four main factors: dimensionality, communication,

interface, and interaction.

1) The required number of interfaces increases with the number of techniques, and this

contributes to the dimensionality problem.

2) Data transfer and sharing complicate the communication between different models.

Output data from a model component is rarely in a form acceptable by another,

hence requiring some transformation.
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3) Any components requiring direct user input must have appropriate user interface.

4) The frequency and manner of user involvement determine whether a model is

interactive or non-interactive.  The former relies on the user or the modeller to

guide the process, while the latter only involves the user in the beginning.  Linear

programming, for example, is traditionally a non-interactive method, as the

modeller specifies the inputs in the beginning but does not interfere with the

intermediate algorithms.

The above structuring issues are detailed in Appendix C, but summarised in table

4.8 below.

Table 4.8 Structuring Issues

Selection of Components Ordering Linkage (supporting argument)

• structural synergies

• functionality

• execution costs

• input requirements

• applicability

• software availability

• technique familiarity

• manageable level of detail

• complementarity

• compatibility

• increasing
complexity

• most relevant
aspect

• most intuitive
model to get
decision makers
involved

• peripheral models
(scenario analysis)

• sequential (good for error tracking and
checking but possible bottlenecks and
slow execution)

• parallel (faster than sequential linkage
but issues of compatibility and
interfacing)

• feedback or iteration (useful for
convergence but may be time-consuming)

• embedded or nested (complexity and
dimensionality issues)

• multi-level, e.g. hierarchical
(organisational issues)

• integrating module whose sole task is to
synthesize and coordinate (extra effort in
constructing this)

In addition to the above, a distinction into weak and strong forms of synthesis is

proposed.  This conceptualisation somewhat corresponds to the three levels of

synthesis associated with needs of an organisation (Dolk and Kottemann, 1993):

combination, aggregation, and integration.  At the lowest rung of the

organisation ladder, models are generally stand-alone or weakly synthesized, i.e.

combined, for operational planning purposes.  At the middle level, models are
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aggregated to pull the information together.  At the top level, models are

integrated (strongly synthesized) for decision making purposes.  In our distinction,

the level of synthesis depends on the degree of dependence or communication

between model components.  A weak synthesis has less inter-component

dependence than a strong synthesis and hence easier to build but possibly more

cumbersome to assimilate the results.  Here, the model components are not tightly

coupled or integrated at all.  The deterministic and probabilistic approaches

represent weak forms of synthesis, whereas the second stage investigates stronger

forms of model synthesis.  The strongest level of synthesis is full integration, where

each component contributes to each other.  In the strong form, individual

components are no longer distinct from each other.  While the strong form may

require more work for the modeller initially, the resulting synthesis provides less

work for the user.  The modelling work involved in synthesizing is a fixed

investment cost, while the additional work involved in using the resulting model is

a variable operating cost.  Thus model integration provides the rationale for

reducing the variable cost (of the user).

After the above conceptualisation, various prototypes are constructed to

investigate the practical issues of synthesis.  Stage two of this experiment attempts

to answer the following questions via the construction of a decision analysis

framework explained in section 4.5.3.

1) How can model synthesis facilitate more extensive uncertainty analysis?

2) How can these conceptual methods be practically implemented?
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4.5.3 Decision Analysis Framework

To overcome the conceptual difficulties in synthesis, decision analysis is proposed

as a front-end, i.e. a modelling framework to unify and organise the model

components.  Such a framework brings the complex issues of capacity planning

close to the decision maker in a reduced form.  The decision tree structure is

envisaged as a means of organising other complementary techniques via nodal

linkage.

Chapter 3 and Appendix B reveal potentially useful features of decision analysis.

The decision tree structure of nodes and branches has synergies with other

techniques, as shown in Appendix C.  It is simple enough for the representation of

decisions and uncertainties and the communication of strategic issues.  Until the

advent of desk top decision software, decision trees were restricted to structuring

simple problems.  The tedious task of expected value calculation especially in large

multi-state, multi-stage decision trees can now be automated by software such as

DPL (ADA, 1992).  These developments motivate a re-use of the age-old decision

tree for new purposes of synthesis.

Decision trees have rarely been used as a framework for incorporating other

techniques or models.  This novel approach requires investigation into model

interface, i.e. dynamic or static linkages in the decision and chance nodes; a method

of capturing single point results of the capacity planning optimisation programme;

the propagation of decisions by conditional events as opposed to time intervals;

and the construction of a decision tree and its equivalent influence diagram.

As concluded from model replications of the first stage of the experiment, decision

trees are too simplistic to incorporate the level of detail required of capacity

planning.  Even in a decision analysis framework, nodal linkages to separate
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techniques of optimisation or simulation become overwhelming and troublesome.

Using the core optimisation model in its existing data-intensive form within a

decision analysis framework poses three operational difficulties.

1) It is very time consuming to generate several scenarios, each to correspond to a

path in the decision tree.  The optimisation model based on Benders’

(mathematical) decomposition uses iterative convergence to reach the optimum.

Each run can take anywhere from a few minutes to well over an hour, depending on

the data involved.

2) Each optimisation gives results that require considerable reduction and conversion

for further use in decision nodes.

3) Interim processing is required to organise the inputs and outputs into an acceptable

form.

The above difficulties imply that any further sensitivity analysis or alternative

scenario analysis will be time-consuming as well as data intensive.

There are at least three ways to overcome these operational difficulties.  1) One is

to build an interface to this optimisation model, i.e. a front-end to act as a filter.  2)

Another is to design an interface with other models to generate the necessary data.

However, neither solution improves upon the speed and ease of the original

optimisation as they are both static links3.  For these reasons, they have not been

further pursued in this thesis.  3) A third proposal is to develop a reduced model of

the original large model, which we call a “model of model.”

To reduce the complexity of model linkages while still adhering to the

completeness of the original optimisation model, we investigate the use of a “model

                                               
3  Static ways of referencing a bigger and more complicated model include 1) setting up look-up tables, 2)

keeping a database of feasible solutions,3)  approximation, 4) using an aggregate function, and 5)
sampling and interpolation to extract or read off values from the original model.
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of model” to facilitate dynamic linkages.  The next section gives a detailed account

of this investigation.

4.5.4 Model of Model

4.5.4.1 Introduction

A “model of model” refers to a reduced model which summarises or approximates

a larger model.  It is a deliberate simplification of the original more complicated

model.  The reduced model answers the need for less input and output and more

speed.  It is useful under the following conditions.

1) The original model is too time consuming to execute.

2) Many executions of the original model is required, making it impractical to use.

3) The original model produces too much output, mostly unnecessary for its intended

use or requires further manipulation or reduction to be useful.

4) Full accuracy is not necessary.

5) The original model requires too much input data which cannot be obtained easily.

6) The original model is not an end in itself, but a means to an end, therefore

approximation is acceptable.

7) The original model cannot be used in model synthesis in its existing form.

In the physical and engineering sciences, response surface methodology (Box and

Draper, 1987) is an established way of building a simpler model from the inputs

and outputs of a larger model.  It comprises a group of statistical techniques, the

most common being the least square method for regression.  The reduced

regression model can be compared with the full optimisation model for model fit,
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whereas most regression models are fitted on data which cannot be generated at

will.

To operationalise the decision analysis framework, we need to determine the

feasibility, practicality, and reusability of a reduced model of the core capacity

planning optimisation model.  Feasibility refers to acceptability and reliability.  In

other words, are the simplifications and approximations acceptable?  Is the

validation reliable?  Practicality refers to the worthwhile effort in producing and

validating a model of model as opposed to constructing a new model.  Reusability

is related to the previous two criteria.  A reduced model is intended for further use,

for example, as input to another model to facilitate further sensitivity or risk

analysis.  The additional effort required to adapt or transform this model must not

be excessive.

4.5.4.2 Methodology

We developed and followed a systematic method of approximating the core

optimisation model using multiple regression.  Such a systematic method can be

repeated for different values of independent variables and different forms of the

final reduced model.  The next paragraphs explain the seven main steps.

1) Determine k desired outputs (dependent variables Yj, j = 1 to k)

First we determined the payoffs and values needed in the decision analysis

framework, as listed in table 4.9 below.  These incremental payoffs were intended

for attachment to nodes of the decision tree, subject to values of other independent

variables or nodes along the path.  A regression equation was built for each

dependent variable.
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Table 4.9 Dependent Variables in the Reduced Model

Dependent Variable Original Output File in Optimisation Model
(name of file appendix)

Investment cost

Operating Cost Optimal Expansion Plan (*.OEP)

Total cost

Cumulative new plant installed capacities per
plant type for a certain time period (in pre-
selected periods)

Production Costing Results (*.PCR)

Marginal Fuel Savings (MFS) of new plants

Net Capacity Credit at 88% availability
(economic attractiveness of newly installed
plants)

Net Capacity Credit (*.NCC)

2) Select m associated inputs (independent variables Xi, i = 1 to m)

In the manner of the first pilot study (Appendix A), we used sensitivity analysis to

find the main independent variables that determine the previous dependent

variables.  The reduced form should be much simpler than the full model, hence,

which original variables to include is an important decision.  Relationships between

Xi and Yj indicate which X’s to select.  The choice of X’s also depend on the

choice of which input variables to fix and which to vary in the optimisation model.

The most important variables are listed in table 4.10 below.
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Table 4.10 Independent Variables in the Reduced Model

Independent Variable in Reduced Model Original (Input or Output) File in
Optimisation Model (name of file appendix)

Reserve margin Input: Period Demand File (*.PRD)

Diversity in plant mix Output: Optimal Expansion Plan (*.OEP)

Type of plant available as an alternative in a
particular period

Capacity cost Input: New Plant File (*.NEW)

Fuel price in base year

Fuel escalation rate Input: Escalation File (*.ESC)

3) Determine value ranges for each Xi

Once the dependent and independent variables have been selected, we determined

the value ranges for each Xi.  We anchored the average value for each Xi, i.e.

E(Xi), then fixed a margin above and below it.  Thereafter, we adjusted the

margins to give a combination of symmetric and skewed ranges.

4) Generate n sets of datapoints for Xi  = n*m

There are two main ways to generate data points for independent variables:

factorial design or probability distribution.

1) Factorial design, for the generation of combinatorial scenarios and equal-interval

permutations, refers to assigning sets of combinations of different values of X’s.

Bunn and Vlahos (1992) used equal interval permutations to get the data for

regressing the model, and then random sampling to get additional data for

validation.  Full factorial design covers all possible combinations of X values, but

this may include meaningless and inadmissible combinations.

2) Probability distributions reflect how likely and how frequently the input data

(values of independent variables) will occur.  Hence it is a more realistic (accurate)
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reflection of how one would expect to get the data (if available) than the factorial

design.  The distribution method also allows the use of sampling techniques, such

as Monte Carlo and Latin Hypercube Sampling within  risk analysis.  As a shortcut,

we used the sampled data generated from the Probabilistic Approach.

We expect n (sample size) to increase with m (number of independent variables.

This is supported by Morgan and Henrion (1990), who observed that the

complexity of the factorial design increases exponentially while the sampling of

probability distributions increases linearly.

5) Automate optimisation runs to get Yj

We modified the spreadsheet macros created during the replication of the

Probabilistic Approach to generate new data for regression analysis.  We then

extracted sets of data for independent variables into text input template files and

editted them into an acceptable form for the optimisation programme.  Each data

set was used for one optimisation execution (run), resulting in one set of output

data.  The relevant dependent variables were extracted from this output into a

spreadsheet.  This was repeated for n sets of data and runs.  One hundred to one

thousand runs were made for each combination of Y and X’s.  After all data sets

have been processed, we modified the formats to prepare for regression analysis.

6) Regression Analysis

The latest releases in desk-top statistical software offered not only statistical but

also visual model fitting facilities.  We used the Curve Fit facility in the statistical

package SPSS Windows to identify the kind of relationship between a pair of X

and Y.  We checked various transformations, e.g. linear and non-linear.  To build a

good regression model, we used facilities such as forced entry (all variables

considered at once), forward or backward elimination, and stepwise regression.

We checked t statistics to eliminate non-significant estimators and adjusted R
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square to get the overall fit.  We also looked at possible interaction terms, outliers,

influential variables, etc.

The R squares were very low, ranging from 0.05% to 32% at best, indicating a

poor fit.  The variance of R squares was very large.  This implied that the form of

regression equation or regression as a technique altogether was not satisfactory.

The variance of residuals was also large.

7) Validation

We validated the resulting regression equations by generating new data by

permutation 1) within the original X ranges, and 2) outside of original X ranges.

These two kinds of validation (within and outside range) were aimed to show the

acceptability and re-usability of the regression model.  A small variance of R

squares would indicate consistency and reliability of these models.

The within and out of range validation tests were unsatisfactory as there was no

pattern to the outcomes of using new data on reduced models.  Along with large

residual variance, these results made the reduced models unacceptable and not

reusable.

Our negative results seem to contradict that of Bunn and Vlahos (1992) who

managed to fit a regression model on a similar optimisation model.  Theirs was

fitted on a sample size of 1000, i.e. a thousand runs in which 6 independent

variables were varied:  demand escalation rate, nuclear capacity cost, discount rate,

coal price, coal price escalation rate, and the level of Non-Fossil Fuel Obligation

(NFFO).  The resulting dependent variable is the difference in total cost of the

optimal plan without the NFFO and with the NFFO.  The regression model was

validated against a further 250 new scenarios.  Building such a model was mainly

used to demonstrate that such a simplified model could be produced, could be

helpful in adversarial debates, and could be useful for subsequent uncertainty
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analysis.  Our choice of independent variables is totally different from theirs as are

our dependent variables.  The background scenarios (fixed variables not entered

into the regression) are also different.  In addition to equal permutation (as they

have done), we also used probability distributions, which should give a more

credible model.  These differences question the generalisability of a reduced

regression model of the optimisation programme.

4.5.4.3 Conclusions

After substantial modelling effort in which different data sets were produced, we

were unable to arrive at a convincing argument for “model of model” using the

method of regression analysis for approximating the capacity planning optimisation

model.  We conclude that “model of model” as a means to capture the production

costing detail of the optimisation programme for the decision analysis framework is

infeasible, impractical, and not re-usable.  These conclusions are supported

below.

1) INFEASIBLE

None of the regression models were reliably and consistently representative of the

original model.  The residuals were large and varied, with no apparent pattern.

This made results unpredictable.  Poor R square implied that regression may not be

a good basis for model building.  These results were perhaps due to the parameters

chosen.

It was difficult to ensure that the artificial data generated from successive runs of

the original model could produce meaningful and admissible combinations for

regression analysis.
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Both within range and out of range validation of reduced models failed to give

convincing results.  This not only questions the acceptability of the reduced model

but also its propensity for further use.

2) IMPRACTICAL

The effort in producing and validating a regression model was quite large.  In fact,

it was greater than the sampling and risk simulation work involved in the

Probabilistic Approach.  This effort should not exceed that of re-using the original

model for the same purposes.

3) NOT REUSABLE

The previous two criticisms (infeasible and impractical) foreshadows its reusability.

The reduced model, even if well-calibrated to the original, could only be used for

the background scenario given, hence of limited use.  In other words, each form of

the reduced model is confined to the background scenario.  This implies that any

variation in background scenario requires the construction of a new reduced

model.  Likewise, changing any parameter that was originally fixed to produce the

reduced model does not guarantee valid results as out of range validation showed

that the model was limited to the independent variables and ranges specified.

4.5.5 Second Stage Conclusions

Several prototypes within the decision analytic framework were constructed.

However, they could not be “operationalised” to the level of detail or functionality

required for capacity planning.  In its existing form, the core capacity optimisation

model was incompatible with decision analysis in data (input and output),

structure, and level of detail.  The output of optimisation was not meaningful for
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linking without further reduction.  These complexities of data size and form added

to the dimensionality problem.

One way to overcome the above problems was by a “model of model.”  After

extensive tests, this approach failed to meet the criteria of feasibility, practicality,

and reusability.  The difficulties in implementing the conceptualisations of model

synthesis are summarised in table 4.11.

Table 4.11 Difficulties of Model Synthesis Implementation

Area of Difficulty Description

optimisation/decision analysis
interface

• incompatible data (size and form)

• conflicting technique assumptions

model of model not feasible, practical, or re-usable

resource limitations:  software
engineering issues

• available software not capable of dynamic linkage

• incompatible interfaces between applications

• programming required for data conversion

• application handler needed to achieve multi-tasking

• no model management system available to overcome
above issues

These practical limitations of models synthesis are due to the conceptual difficulties

given in Appendix C and the operational difficulties which reveal the importance of

compatibility of components at different levels.  We raise the following hypotheses

for further research, which together with our experimental findings help to explain

the impractical pursuit of model synthesis given the limitations of our current state-

of-the-art software and the resources and capability of a single utility.

1) Model synthesis requires the resources and capability beyond a single model

builder.  Utilities in the UK ESI, especially new entrants, have limited resources.

Model synthesis may not be a practical solution.  Furthermore, a single model

builder is biased by the technique familiarity, choosing only to use techniques that
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are most familiar and available, thus unable to see the synergies for model

synthesis.

 2) Even if model synthesis is workable, it is hard to say if the insights from the

resulting model are more useful than using different techniques, i.e. without any

synthesis.  The fixed cost of synthesis may be too great especially if not re-usable.

3) The case study contained too many dimensions to be comprehensibly modelled:

perspectives, questions, objectives, and uncertainties.  Yet, this case study was

already a deliberate simplification of reality.  This implies that the actual problem is

far more complicated, and may not altogether be sufficiently addressed from a

modelling perspective.

Our earlier prescription of “complementary but compatible techniques for

comprehensive and comprehensible models” is a difficult goal to achieve by model

synthesis.  While “complementary” may be a means to “comprehensiveness” or

“completeness”, “compatible” is not a means to “comprehensibility” but, rather,

“synthesis.”  Synthesis implies some form of “co-existence.”  As a means to

completeness, it requires compatibility of techniques, data, interface, assumptions,

and other issues beyond a superficial level.

On the basis of the above conclusions, we turn to other ways of dealing with the

range of uncertainties as suggested in the literature. Recent electricity planning

literature has called for flexibility in planning and the consideration of flexible

technologies.  [See Chapter 5 for discussion and references.]  Flexibility is

frequently mentioned as a response to uncertainty but without guidance to how it

can be used within this context.  Flexibility as an end in itself radically departs from

the previous focus of model synthesis.
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4.6 Motivation for Flexibility

4.6.1 Completeness and “Model Unease”

Implicit in the modelling approach is the goal of completeness.  Model

completeness refers to the comprehensive coverage of all aspects of the problem,

i.e. capturing all uncertainties, as a means to deal with strategic uncertainties.  For

example, our modelling experiments aimed to achieve completeness by

thoroughness of approach, i.e. the consideration of all significant variables for

adequate problem representation, close representation of reality (good

approximations), and systematic treatment of uncertainty.

Completeness is difficult to achieve since a model, by definition, is a simplification

of reality so necessarily incomplete.  This begs the question:  is completeness a

reasonable and achievable modelling goal in the first place?  Aversion to large

models in strategic planning has led to simple models, e.g. Ward (1989), for the

understanding of uncertainty and related issues.

We argue that completeness is only a means of increasing the level of confidence

for the user of the model, i.e. the final decision maker who relies on the model for

guidance and defensibility.  A high level of confidence ensures that the resulting

model will be used and re-used.  A low level of confidence suggests that the user

experiences “unease” in using the model fully or at all.  The real question is:  is it

possible, and if so, how to remove that “model unease” ?

We illustrate in table 4.12 our interpretation of Mandelbaum and Buzacott’s (1990)

statement “flexibility compensates for model unease.”  The left-hand column gives

the user’s general belief about model completeness, i.e. whether or not models can

be complete.  The top row gives what the user has been told about the model in
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question.  There is no unease if the user believes that models can be complete, and

this particular model is complete.  There is model unease whenever the model in

question is not complete or if the user does not believe in completeness.

Table 4.12 Completeness and “Unease”

Modeller’s Assertion or
User’s belief about this

particular model:

User’s Belief about all
models:

Model is complete. Model is not complete.

Models can be complete. No unease. Intra-model unease.  More
modelling required.

Models are never
complete.

Extra-model unease.
Flexibility needed.

Model unease.  Flexibility
needed.

We distinguish between intra and extra model unease.  Intra-model unease refers

to the lack of completeness within a model, but may be amended by further

modelling such as the use of sensitivity analysis.  Model synthesis is an attempt at

removing this kind of unease.  Extra-model unease refers to the gap between the

user and the model, i.e. the user believes that models can never be complete.

Therefore there will always be an unease about what the model gives and what the

user desires from the model.  This gap between the user and the model

characterises the style of decision making in this industry because the decision

maker is not the builder of capacity planning models.  This gap can be argued as

follows.

1) Model and forecast errors always exist.  Traditional approaches rely greatly on the

accuracy of forecasts.  However, forecasts by definition are predictions.

Discrepancies (errors) between the actual and the forecast, no matter how small,

will always occur.  Models are simplifications.
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2) The dynamics of model building, decision making, and realisation of plans imply

that there is always a gap due to lead time.  The nature of the generation business is

such that investments have to be made before they are needed, during which time

any number of factors may occur and change the expected performance.  There are

lead times to the construction of a useful model, the effective communication of its

results, and understanding and acceptance by the final users.

3) Models do not supply everything the user wants.  The user may not understand the

model fully, hence unease.  The user may want to retain own control, i.e. not rely

on the model completely.  Other organisational and political reasons may prevent

full acceptance of the model.

If we believe that models can never be complete, then there will always be unease.

According to Mandelbaum and Buzacott, we should use flexibility to hedge against

model unease.  This also suggests that the real goal we should be aiming towards,

in addressing the problem of uncertainties in electricity planning, is not modelling

towards greater completeness, but modelling for (or to produce) practical solutions

to cope with uncertainty.  Practical means to cope with uncertainty are given in the

next sub-section.

4.6.2 “Coping” with Uncertainty

Practical means of coping with uncertainty have been suggested by Hertz and

Thomas (1983) and Hirst and Schweitzer (1990).  1) Ignoring uncertainty allows

one to focus on the complexities albeit at a high cost.  2) Building more accurate

forecasts may help to achieve more accurate optimisation, but this does not

prevent forecast errors.  3) Planning so that future decisions are unnecessary is a

form of robustness, but this does not eliminate uncertainties.  The remaining

measures to cope with uncertainty are variations of the flexibility theme.
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4) Defer decisions by waiting until additional information is available or until

important uncertainties are resolved.  The cost of waiting includes the opportunity

cost of expired options.

5) Purchase additional information to reduce uncertainties.  This requires the

assessment of perfect and imperfect information to eliminate and reduce

uncertainties respectively.

6) Sell risks by conducting auctions for supply and demand resources.  Negotiate

long term fuel supply and demand contracts.

7) Adopt a flexible strategy that allows easy and inexpensive changes.  One way is to

invest in flexible technology, which is characterised by short construction lead time

and small modular unit size.  Recent electricity planning literature (e.g. CIGRE,

1991 and 1993) has also proposed technical means of achieving flexibility in

planning and systems.

4.7 Conclusions

How can we cope with increasing uncertainty and meet the conflicting criteria

of comprehensiveness and comprehensibility?

One obvious answer is to build bigger models through model synthesis.

Conceptually, model synthesis should be able to overcome deficiencies of

individual techniques by exploiting synergies between them.  It promises a more

comprehensive coverage of areas of uncertainty and a more versatile treatment of

different types of uncertainties.  Several ways to achieve synthesis have been

suggested and two of them pursued in this thesis, namely decision analysis as an

organising framework and a reduced model of the full optimisation model to

capture the relevant details, i.e. “model of model”.
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We investigated the feasibility of model synthesis by conducting a two staged

modelling experiment which consisted of model replication, evaluation,

conceptualisation, and prototyping.  The main findings, listed below, cast

considerable doubt on further pursuit of “modelling for completeness.”

1) The first stage of the modelling experiment showed that existing approaches were

incapable of dealing with the conflicting criteria of comprehensiveness and

comprehensibility.

2) The second stage revealed the limitations of model synthesis as a singular approach

to uncertainty modelling.

3)  In particular, model synthesis via a decision analytic framework employing model

of model for data interface and dynamic linkages was infeasible and impractical.

4) These results suggest that model synthesis is not a trivial undertaking, and the work

involved may well exceed the capacity of a single modeller and the limited

resources of a single utility.

5) Furthermore, synthesis requires compatibility beyond a superficial level.

We then examined the goal of model completeness and concluded that reducing or

removing “model unease” may be a more appropriate goal for dealing with the

range of uncertainties in electricity planning.

Flexibility has been suggested as a hedge against model unease and as a practical

means to cope with uncertainty.  It is an intuitively obvious concept that appeals to

the decision maker.  That such an ill-defined concept could complement or even

substitute the traditional approach of rigorous modelling seems far-fetched.  It

seems inappropriate to the capital intensive electricity industry, which is

characterised by irreversibility (of capital investments and function-specific

infrastructure), inflexibility (of long lead times and high sunk cost), and illiquidity

(as the sale of uneconomic plant is still a relatively new phenomenon).  Assets in
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the electricity supply industry are not as easily exchangeable or tradeable as those

in the financial markets where flexibility is synonymous with liquidity.  Electricity

trading is not as competitive as the manufacturing and labour markets where

flexibility is a much discussed operational objective.  The strong engineering

culture of the electricity industry requires detailed specification of model

requirements and data input; thus the vague concept of flexibility must be precisely

defined to be useful to capacity planning.

Although conceptually promising, flexibility requires further research to ascertain

its practical usefulness.  We need to be able to define, measure, and apply it to our

problem.  The second part of the thesis clarifies the concept of flexibility through a

broad review of its definitions and applications from various disciplines.


